Micromechanical modeling of fatigue crack initiation in polycrystals

  • Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling crack initiation remains a major challenge in the scientific and engineering community. In the present work, a micromechanical model is developed and applied to study fatigue crack initiation. In particular, the effect of different hardening mechanisms on fatigue crack initiation is investigated. To accomplish this, a model describing the evolution of the particular dislocation structures observed under cyclic plastic deformation is implemented and applied on randomly generated representative microstructures to investigate fatigue crack initiation. Finally, a method is presented to calculate the S–N curve for the polycrystalline materials. With this work, it is demonstrated how the micromechanical modeling can support the understanding of damage and failure mechanisms occurring during fatigue.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Hamad ul HassanORCiDGND, Martin BoeffORCiDGND, Alexander HartmaierORCiDGND
URN:urn:nbn:de:hbz:294-65750
DOI:https://doi.org/10.1557/jmr.2017.384
Parent Title (English):Journal of materials research
Publisher:Campridge University Press
Document Type:Article
Language:English
Date of Publication (online):2019/09/06
Date of first Publication:2017/12/14
Publishing Institution:Ruhr-Universität Bochum, Universitätsbibliothek
Volume:32
Issue:23
First Page:4375
Last Page:4386
Note:
© Copyright Cambridge University Press. Permission for reuse must be granted by Cambridge University Press in the first instance.
Institutes/Facilities:Interdisciplinary Centre for Advanced Materials Simulation (ICAMS)
open_access (DINI-Set):open_access
Licence (German):License LogoNationale Lizenz